
AdaptiveFashion: Improving Consumer-to-Shop
Clothes Retrieval with Adaptive Margin

Pendar Alirezazadeh
University of the Basque

Country UPV/EHU, Spain
Email: palirezazadeh@ehu.eus

Fadi Dornaika∗
University of the Basque

Country UPV/EHU, Spain
IKERBASQUE, Basque Foundation

for Science, Spain
∗ Corresponding author:

Email: fadi.dornaika@ehu.eus

Abdelmalik Moujahid
University of the Basque

Country UPV/EHU, Spain
Email: jibmomoa@gmail.com

Abstract—Due to different camera angles and shooting condi-
tions, different background environments, and different postures,
fashion images captured by consumer cameras usually have
limited resolution. Thus, in consumer-to-shop clothes retrieval,
it is hard to retrieve high-resolution online shop clothes through
low-resolution consumer images. Recently, Convolutional Neural
Networks (CNNs)-based approaches have been employed to
extract discriminative features and subsequently improve the
accuracy of clothing retrieval. In order to enhance the discrimina-
tive power of the deeply learned features, margin-based softmax
losses, such as CosFace, and Additive Margin-Softmax have been
proposed, but since they consider the same margin for the positive
and negative pairs, they are not suitable for fashion retrieval. In
this paper, we proposed Fashion Adaptive Margin (FAM) method
to learn two different margins for positive and negative pairs
such that the negative margin is larger than the positive margin,
which provides a stronger intra-class reduction for negative pairs
compared to positive pairs. Considering the larger margin for
negative pairs helps us to overcome the problem of negative pairs
with small and large visual differences. Experimental results on
publicly available fashion datasets DARN and two benchmarks of
the DeepFashion dataset: 1)Consumer-to-Shop Clothes Retrieval
and 2) InShop Clothes Retrieval demonstrate the effectiveness
of our proposed approach. FAM achieved Top-50 retrieval
performances of 0.759, 0.921, and 0.87 on the Consumer-to-
Shop Clothes Retrieval benchmark, the InShop Clothes Retrieval
benchmark, and DARN dataset, respectively.

I. INTRODUCTION

Garment search between consumers and stores was recently
discovered by image processing scientists to find similar
images of garments in stores based on a user photo. Due to
the different shooting conditions, the main challenge is the
discrepancy between the photos taken by customers and the
fashion images taken by professional photographers. The same
clothes can look different under different circumstances such
as light, different situations or poses. In contrast, different
clothes can be visually similar. Recently, consumer-to-shop
clothes retrieval made progress using convolutional neural
networks (CNNs) [1], [2], [3], [4], [5], [6], [3], [7]. Most of the
existing methods focus on proposing stronger general and local
feature descriptors to extract more complete characteristics.

The problem of consumer-to-shop clothes retrieval is par-
ticularly challenging due to the differences between the two

domains. Another challenging aspect of clothing retrieval is
the small visual differences between specific clothing items
(e.g., jeans and pants). Small visual differences lead to finding
hard examples. The hard examples have many similarities with
the query image, but they do not match each other. The small
superficial difference causes the images to be retrieved in the
wrong way, which degrades system performance.

Loss functions play an important role in network conver-
gence and discriminative feature extraction. Recently, much
attention has been paid to softmax-based loss functions. Some
researchers have introduced margin-based softmax loss func-
tions for discriminative analysis. The basic idea behind these
methods is to assign an equal decision margin to each class to
help CNNs learn discriminative features. However, assigning
an equal decision margin to positive and negative classes leads
to poor performance of the system on negative pairs with small
visual differences. These pairs require a larger decision margin
to distinguish them from the positive pairs as much as possible.
We propose a discriminative loss function called Fashion
Adaptive Margin (FAM) to favour a larger margin for negative
pairs to strongly squeeze the intraclass variations of negative
pairs. Siamese networks using pre-trained VGG16 backbones
are trained with FAM to learn discriminative deep features
for finding similar clothing images. Experiments with Deep-
Fashion [8] and DARN [9] databases show that our proposed
method performs better than state-of-the-art approaches. The
main contributions of the proposed work can be summarized
as follows:

• A fashion adaptive margin loss function, called FAM,
is proposed to learn deep discriminative features for
consumer-to-shop fashion retrieval.

• FAM learns a larger margin for negative class compared
to positive class which is caused to a adaptive decision
margin, to extend inter-class variation and compact the
negative intra-class.

• The proposed approach achieves state-of-the-art perfor-
mance on consumer-to-shop fashion retrieval datasets,
including DeepFashion [8] and DARN [9].



II. RELATED WORK

A. Fashion Retrieval

In the last decade, consumer-to-shop image retrieval [8],
[10], [11], [12], [13] has been studied comprehensively. [12]
proposed the concept of cross-domain clothing retrieval. Using
human body posture, they have estimated the human body
area and implemented cross-domain through two-step sparse
coding clothing search. [14] proposed a novel region rep-
resentation method which uses a binary spatial appearance
mask to constrain the human body posture for pose estima-
tion. [10] proposed the concept of accurate retrieval across
scenes, with the aim of online shopping to find the exact
same item on the shopping website. Dual attribute percep-
tual ranking network based on two completely independent
branches (DARN) [9] has used feature learning for different
scene domains. FashionNet proposed by [8] learns clothes
retrieval by jointly predicting clothing attributes and landmarks
features and applies the network to cross-scenario services
for DeepFashion dataset. YNET proposed by [13] builds
different deep learning branches for each domain to model
domain-specific characteristics, but the public branch at the
bottom of the network has learned features without considering
high-level semantic information. [2] proposed a Grid Search
Network (GSN) for learning feature embedding for fashion
retrieval. They also utilized a reinforcement learning-based
strategy to learn a specialized transformation function over
the feature embedding. [1] recommended the Siamese-based
networks entitled as Graph Reasoning Network (GRNet) for
similarity learning between a query and clothing gallery store
using global and local representations. We perform the cross-
domain consumer-to-shop clothes retrieval via the Siamese
networks, which have the same weights for both sub-networks.
To overcome the limitations of the data problem and avoid
the complexity of the network structure to extract stronger
features, a novel Fashion Adaptive Margin(FAM) is proposed
which is suitable for apparel search. The network is optimized
with FAM to learn discriminative features and achieve more
accurate matching.

B. Loss Function

Loss functions have an important role in deep embedding
learning. Deep embedding learning methods enhance discrim-
inative power by improving loss functions. Contrastive loss
[15], [16] and Discriminative loss [17] optimize input pairwise
samples’ Euclidean distance, within a margin for inter-class
in a feature space. Triplet loss [18] constructs input triplet
samples to separate the positive pair from the negative pair
by a Euclidean distance margin for better inter-class feature
embedding. Therefore, both contrastive loss and triplet loss
impose Euclidean margin to learned features. These methods
depend on the number of positive and negative input pairs or
triplet images. Hence, the performance of these loss functions
is sensitive to the introduction of pair or triplet mining
procedures, which is time-consuming [19]. Recent approaches
combine Euclidean margin-based losses with softmax loss.

In [20], the authors proposed a center loss to learn centers
for deep features so that each class minimizes the intra-class
variations and the given centers are combined with softmax
loss. The deep features learned by softmax loss have intrinsic
angular distribution, and Euclidean margin-based losses are
incompatible with softmax loss. Recently, researchers have
optimized softmax loss for intra-class variation. [21] proposed
a large margin softmax (i.e., L-softmax) by adding angular
constraints to each identity in order to improve feature discrim-
ination. Furthermore, [19] improved L-softmax by normalizing
the weights and proposed Angular Softmax (A-Softmax). Due
to the difficulty of angular constraints optimization, [22],
[23] moved from angular space to cosine space and added
a cosine margin to the cosine space and proposed CosFace
loss function. In a similar way, ArcFace [24] moves the
additive cosine margin into the angule space and uses an
additive angular margin within the cosine space to enhance
the intraclass compactness and inter-class discrepancy. Cos-
Face puts more emphasis on increasing the distance between
classes, while ArcFace improves the compactness within the
class and the discrepancy between classes. When searching
for fashion between consumers and stores, negative pairs with
small visual differences can be classified as positive pairs,
reducing retrieval performance.

In contrast to existing loss functions, we propose a novel
cross-domain loss in order to import two different margins
into the negative and positive intra-classes to extract discrimi-
native features and improve fashion retrieval. Figure 1 depicts
the margin-based softmax losses: CosFace, Arcface and our
introduced FAM loss.

III. PROPOSED APPROACH

The main objective of the proposed approach is to learn a
deep embedding using a training set of positive and negative
pairs. At inference time, the deep features of a query image are
extracted and compared with those of the images of a gallery
in order to perform the retrieval using a simple similarity
measure.

Since the cross-domain fashion retrieval involves image
analysis of two different domains, the use of Siamese networks
in computing comparable output vectors has been preferred.
Usually, Siamese networks are trained using distance metric
losses such as contrastive and triplet losses for learning. Dis-
tance metric losses do not always optimize targets consistently
across training, even if all possible distances within the mini-
batch are considered [25]. Thus, researchers use the softmax
cross-entropy loss because of its advantages. The extracted
features by softmax are well-separated by the angle not by
Euclidean distance and the optimization of targets by softmax
converges fast and consistently. However, softmax loss is
not able to extract the distinctive features optimally due to
lack of normalization and limited decision boundary. This
problem is especially evident when the negative pairs are very
similar. Recent works [19], [21], [22], [23] have attempted
to improve the performance of softmax by increasing the
decision margin. By projecting Euclidean space into an angular



Fig. 1. The main idea of margin-based softmax losses. CosFace attempts to reduce the logit of the loss function by applying the margin m to the cos(theta)
in cosine space. ArcFace, on the other hand, focuses directly on the angle and attempts to reduce the logit of the loss function and converge the network
by increasing the angle between the normalized weight and the feature vector. Unlike CosFace and Arcface, which apply the same margin to positive and
negative pairs, FAM learns two different margins for positive and negative pairs such that the negative margin is larger than the positive margin, allowing for
intra-class reduction for negative pairs.

Fig. 2. Comparison between the CosFace loss and the Fashion Adaptive
Margin (FAM) loss. Blue area represents the decision margin between the
positive and negative classes. Extracted feature vectors of the positive or
negative image pairs are fused at the feature level to form one single vector.
CosFace [22] assigns the same margin m for positive and negative classes,
resulting in a fixed decision margin, therefore the discrimination process
cannot be strong enough. Compared to the margin for positive classes,
FAM learns a larger margin for the negative classe, consequently expands
the variations between classes and condenses the variations within classes,
implicitly optimizing the discrimination space. Negative pairs with small
visual differences move closer to negative pairs with large visual differences,
resulting in hard examples being forced into the feature space of the negative
class.

space, these works introduce an angular margin to extend
inter-class variance that distinguishes different classes and
extracts distinct features. Angular margin optimization is a
difficult process and requires many assumptions [24]. Since
angle cosine analysis is more compatible with softmax, the
reasonable solution is to introduce margin based on the cosine
of the angle between the deep features and the representation
of the class in the last fully connected layer, which is also
easier to optimize. Accordingly, CosFace and ArcFace losses
[22], [24] are introduced by replacing the angular space with
cosine space. These methods introduce a cosine margin m
to maximize the decision margin in the angular space by
formulating softmax as a cosine loss by L2 normalization of
the features and weights. The additive cosine margin assigns
a margin m between the positive and negative classes. If a
same margin m is set for the positive and negative classes,
the feature distributions of the negative class may not be as

compact as those of the positive class. The goal is to achieve a
small intra-class for the negative pairs in addition to increasing
the variation between classes. If the same margin is considered
for the positive and negative classes, the negative pairs that
are very similar can be considered as positive, which reduces
the functionality of the system in the discrimination process.
We further visualize the phenomenon through the process
of distinguishing the positive pairs from the negative pairs
as shown in Figure 2. Figure 2 demonstrates the process of
distinguishing the positive pairs from the negative ones. Let
us suppose that the normalized weight vectors W1 and W2

for the positive and negative pairs are given. In our work, the
feature fusion of a pair of images is obtained by adding the
deep feature vectors of the two images. Here the positive class
is designated by class1, and the negative class by class2.
The blue space represents the inter-class variation, and for
CosFace, an equal value of m is dedicated for both positive and
negative classes. This leads to compact intra-class variation of
both classes equally.

In order to address this issue, we introduce a novel dis-
criminative margin loss called FAM for cross-domain fashion
retrieval. By assigning a larger margin to the negative class
compared with the positive class, we attempt to simultaneously
extend the inter-class variation and reduce the intra-class
variation of the negative class, which further assures the
absence of very similar negative pairs in the positive decision
margin. Softmax separates features from different classes by
maximizing posterior probability of the related class. Consid-
ering a deep feature vector xi and its corresponding label yi,
softmax loss is defined as follows:

LSoftmax =
1

N

N∑
i=1

− log pi =
1

N

N∑
i=1

− log
ewT

yi
xi+byi∑C

j=1 e
wT

j xi+bj
,

(1)
where pi indicates the posterior probability of feature vector
xi (one single vector which is formed by the fusion of the
extracted feature vectors of the positive or negative image pairs



at the feature level) being correctly classified into related class
yi, wj denotes the j − th column of the weight matrix W, b
is the bias term, N is the number of training samples and C
is the number of classes. By normalizing xi and wj using L2

normalization, re-scaling xi to s and fixing the bias b = 0
for simplicity [22], the feature distance is projected to feature
angular as follows:

wT
j xi = ∥wj∥ ∥xi∥ cos θj = s(cos θj), (2)

where θj is the angle between wj and xi. Thus, both norm and
angle of vectors contribute to the posterior probability. Based
on this formulation, some methods have been proposed to
optimize and extend the inter-class margin [22], [23] and intra-
class margin [24]. Since optimization is much easier in cosine
space compared to angular space, we further focus on the
cosine margin analysis. By importing margin m into the cosine
space of softmax and using cos (θj) = wT

j xi, the margin
cosine loss (CosFace) [22] attempts to further distinguish it
as follows:

LCosFace =
1

N

N∑
i=1

− log
es(cos(θyi)−m)

es(cos(θyi)−m) +
∑C

j ̸=yi
es cos(θj)

,

(3)
where N is the number of training samples, xi is the i-th
feature vector corresponding to the ground-truth class yi, wj

is the weight vector of the j-th class, and θj is the angle
between wj and xi.

Since cross-domain fashion retrieval is a discriminative
binary issue, we have only two classes (similar and dissim-
ilar classes). Let θ1 and θ2 denote the angles between the
embedding feature vector and the weight vectors of class
C1 and C2 (w1 and w2), respectively. In CosFace method,
the value of margin m for positive and negative classes are
considered as a constant value, which causes pairs with small
visual differences (hard examples) to be identified as positive
pairs. This problem is most evident in cross-domain fashion
retrieval, which has high similarity in design and appearance
between different types of clothing. Our goal is to extend inter-
class variation to prevent hard examples from entering to the
positive feature space and enhances the discriminative power.
For this purpose, we assign a larger m to negative class to
further reduce the intra-class variation of negative class. The
cross-domain loss is formulated as follows:

LCross−Domain =

1

N

N∑
i=1

− log
es(cos(θyi)−myi)

es(cos(θyi)−myi) + es(cos(θj))
, (4)

where N is the number of training samples, myi
is the

margin corresponding to the ground-truth class yi ∈ {p, n}
of the i-th pair (where for positive class is mp and for
negative class is mn), and j ̸= yi. mn should be larger than
mp. Imposing mn > mp aims to compact negative decision

boundary and to expand inter-class and reduce negative intra-
class, which further ensures the absence of the hard examples
to the positive feature space.

To ensure the discriminative power of cross-domain loss and
provide a crucial solution, we introduce the discriminative part
as follows:

LDiscriminative = −(λ1 ∗mp + λ2 ∗mn), (5)

where λ1 and λ2 (λ1 < λ2) are balance factors to control the
magnitude of the positive and negative margins. By combining
(4) and (5), Cross-Domain Fashion Adaptive Margin Loss
(FAM) is proposed as:

LFAM = LCross−Domain + LDiscriminative =

1

N

N∑
i=1

− log
es(cos(θyi)−myi)

es(cos(θyi)−myi) + es(cos(θj))

− (λ1 ∗mp + λ2 ∗mn), (6)

where mp, mn are the margin for positive and negative classes,
θyi

is the angel between xi (the merged feature vector of
the positive or negative pair) and the vector wyi

. The hyper-
parameters λ1 and λ2 control the discriminative power of
FAM.

IV. EXPERIMENTS

A. Datasets

We evaluated our proposed method on the DARN dataset,
and on two benchmarks of the DeepFashion dataset: 1) InShop
Clothes Retrieval, and 2) Consumer-to-Shop Clothes Retrieval.

The DARN dataset was collected from street images taken
by users and professional photos provided by online shopping
sites. We followed the evaluation protocol provided in [26],
which considers a subset of 62,812 street images and 238,499
shop images of 13598 distinct products. The dataset was
partitioned into three subsets for training, validation and test,
with no overlap of products. All the images were resized to
180×100 RGB images and randomly rescaled with a scaling
factor between 0.5 and 1.5, random rotation between 0 and
90 degrees, and vertical and horizontal mirroring for data
augmentation.

DeepFashion dataset [8] is one of the largest datasets for
clothing image analysis, and contains more than 800k images.
Each image of the dataset is accompanied by labels of cate-
gories, attributes, bounding boxes, and landmarks. The pres-
ence of occlusion, deformation, illumination variations, and
large variations in pose and scale have made this a challeng-
ing dataset. Consumer-to-Shop Clothes Retrieval benchmark
includes 239,557 consumer-to-shop clothing images across
33,881 clothing items. The InShop Clothes Retrieval bench-
mark contains 52,712 images across 7,982 clothing items.
To ensure fairness in comparison, the train-val-test splits are
provided. In accordance with the state-of-the-arts methods, we
used these splits in all our experiments. Also, every image was
cropped using provided bounding boxes.



Fig. 3. The overview of our proposed cross-domain consumer-to-shop clothes
retrieval system. The Siamese network consists of two subnetworks with the
same architecture and weights. The extracted features of the two subnetworks
are normalized by L2 normalization. The two 128-dimensional embedding
instances for customer and shop images are merged by Add fusion layer.
The FAM loss drives the training of the network to learn features where the
discriminative decision boundary increases and the negative margin becomes
more compact. Then, the trained deep network is used to extract features
from the image database and create a feature database. In the retrieval phase,
features of the query image are extracted by the trained deep network and
compared with the features of the feature database by the cosine similarity
distance. Finally, top ranked results are displayed to the customer.

Fig. 4. The proposed CNN architecture is based on the VGG16 network. The
weights of this net are pre-trained on ImageNet dataset. The fully connected
layers are changed in our architecture. The weights of the first three groups are
frozen and the weights of the last two groups are trained using the datasets.

B. Implementation Details

The proposed cross-domain fashion image retrieval Siamese
network is shown in Fig. 3. A Siamese network includes two
identical CNNs, one for shop images and another for customer
images. We considered a modified VGG-16 architecture for
each sub-network, pre-trained with the ImageNet dataset. The
architecture of this model is given in Fig. 3. From each
network, a 128-dimensional feature vector was extracted and
normalized by l2 norm, then these two features extracted from
the two sub-networks are merged by Add Fusion Layer. The
stochastic gradient descent (SGD) was adopted to optimize
the network using the proposed LFAM loss in (6). We used
the initial learning rate 1 × 10−4 and weight decay with
5 × 10−4. We follow [22] to set the feature scale s to 64
and momentum to 0.9. We choose an initial cosine margins
mn and mp at 0.4 and 0.35, respectively. We empirically
found that when (λ1, λ2) = (70, 75), the system reaches its
highest performance (see section IV-D). The model and loss

layer were implemented in Python 3.6 using the Keras 2.2.4
deep learning library and trained with a batch size of 128
in a NVIDIA GeForce RTX 2080 Ti GPU. After training,
the fashion retrieval problem between consumers and stores
is formulated as an asymmetric (single-to-multiple) matching
problem. These features are input to the similarity distance
metric to perform pairwise matching between customer and
store images. Then, the top ranked results are displayed to the
customer. The retrieval performance of the proposed method
is evaluated based on top-k accuracy as in [8], which is the
ratio of correct matches within the top-k returned results.

TABLE I
TOP-K ACCURACY RATES COMPARISON ON CONSUMER-TO-SHOP
CLOTHES RETRIEVAL BENCHMARK OF DEEPFASHION DATASET.

Accuracy
Method Top 1 Top 20 Top 50

FashionNet 0.073 0.188 0.228
Triplet 0.109 0.378 0.499
VAM+ImgDrop 0.137 0.439 0.569
DREML 0.186 0.510 0.591
KPM 0.213 0.541 0.652
FAM 0.236 0.624 0.759

C. Experiments on Datasets

DeepFashion has introduced a standard protocol with train-
ing, validation and testing sets. [8] We followed this standard
protocol and evaluated our approach on two benchmarks
of DeepFashion: InShop Clothes Retrieval, and Consumer-
to-Shop Clothes Retrieval. Table I compares the proposed
FAM with state-of-the-art methods, including FashionNet [8],
Siamese-Triplet [7], VAM+ImgDrop [7], DREML [27], and
KPM [28] on Consumer-to-Shop Clothes Retrieval. We sig-
nificantly outperform all previous works. KPM has achieved
the best results among previous methods and it is based on the
Siamese networks, which suggests that this type of network is
the best architecture to address cross-domain image retrieval.
Compared to KPM, FAM improves the retrieval performances
for top-1, top-20, and top-50 by 2.3, 8.3, and 10.7 percentage
points, respectively.

TABLE II
TOP-K ACCURACY RATES COMPARISON ON INSHOP CLOTHES RETRIEVAL

BENCHMARK OF DEEPFASHION DATASET.

Accuracy
Method Top 1 Top 20 Top 50

FashionNet 0.529 0.764 0.796
VAM 0.669 0.892 0.945
DARN 0.382 0.675 0.717
GoogleNet 0.554 0.823 0.877
FAM 0.712 0.875 0.921

To evaluate and demonstrate the effectiveness of the pro-
posed method for images from the same domains, we eval-
uated InShop Clothes Retrieval (Table II). As can be seen
in Table II, our approach achieves the best top-1 accuracy



Fig. 5. Top-k accuracy rates for different methods under comparison on
DARN Consumer-to-shop retrieval dataset.

of 0.712. For top-20 and top-50, our approach achieves an
accuracy slightly lower than the performance of VAM. It is
worth noting that VAM uses an attention subnetwork that re-
quires a clothing segmentation dataset for training, while FAM
is trained using only image pairs from queries and galleries,
which is more practical. We further evaluate our method on
the DARN dataset. The DARN dataset is specifically collected
for street-to-shop retrieval. Because no standard protocol for
the DARN dataset has been provided by its collectors, for a
fair comparison, we follow the evaluation protocol provided
by [26], [5]. The results are shown in Figure 5. Again, FAM
outperforms the state-of-art, which is based on a Siamese-
Triplet (a Siamese architecture coupled with a triplet loss
function to optimize the network).

In order to show the benefit of our approach in cross-domain
problems, we compare the performance of the proposed
method with the state-of-the-art softmax-based loss functions.
Following the implementation details in Section IV-B, we
report results obtained with our Siamese network on the
DeepFashion and DARN datasets with the same CNN ar-
chitecture and different loss functions. Table III shows the
retrieval performance (top-20) of different loss functions on
DeepFashion and DARN. As can be seen, FAM achieves
competitive results when compared to the other softmax-based
losses across the two datasets. In particular, our loss method
significantly outperforms the margin loss functions such as
CosFace, which tries to extend the decision boundary and
distinguish positive and negative pairs.

D. Effects of λ1 and λ2 on Discriminative Margin Loss

Discriminative Margin Loss consists of two parts, the cross-
domain loss, and the discriminative margin average loss.
The discriminative part of FAM plays an important role in
preventing the positive margin mp from becoming equal to
the negative margin mn during the training process. In this
part, we conduct an experiment to investigate the effects of
the different combinations of λ1 and λ2. By varying the value
of λ1 from 0 to 100 and λ2 from 5 to 105, we obtain different
combinations of λ1 and λ2. Then, we train our model on
DeepFashion and DARN training subsets and validate it on

TABLE III
COMPARISON OF THE PROPOSED FAM WITH STATE-OF-THE-ART

SOFTMAX-BASED LOSS FUNCTIONS IN CONSUMER-TO-SHOP CLOTHES
RETRIEVAL (TOP-20). ALL THE METHODS IN THIS TABLE HAVE USED THE

SAME TRAINING DATA AND THE SAME SIAMESE NETWORKS
ARCHITECTURE.

Accuracy
XXXXXXXXLoss

Dataset DeepFashion DARN

Softmax 0.32 0.46
SphereFace 0.55 0.59
ArcFace 0.57 0.61
CosFace 0.58 0.64
FAM 0.62 0.73

the test subsets. Since our ultimate goal is to make mn larger
than mp, we set the value of λ2 above λ1. As shown in Table
IV, the retrieval performances on Consumer-to-Shop Clothes
Retrieval benchmark of DeepFshion and DARN improves with
the increase of λ1 and λ2 from 0 to 70 and from 5 to 75,
respectively. When (λ1, λ2) = (70, 75), the system appears
to reach its highest performance and enters saturation, after
which system performance begins to decline.

TABLE IV
THE RETRIEVAL PERFORMANCE OF DISCRIMINATIVE LOSS MARGIN WITH

DIFFERENT DISCRIMINATION PARAMETERS λ1 AND λ2 IN
CONSUMER-TO-SHOP CLOTHES RETRIEVAL (TOP-20).

AccuracyhhhhhhhhhhhhhhHyperparams (λ1, λ2)

Dataset
DeepFashion DARN

(0,5) 0.591 0.682
(10,15) 0.599 0.696
(20,25) 0.606 0.701
(30,35) 0.611 0.709
(40,45) 0.615 0.718
(50,55) 0.620 0.721
(60,65) 0.622 0.728
(70,75) 0.624 0.733
(80,85) 0.620 0.729
(90,95) 0.615 0.721
(100,105) 0.609 0.706

V. CONCLUSION

In this work, we proposed a cross-domain fashion adaptive
margin loss (FAM) to train deep embedding features for
consumer-to-shop fashion retrieval problem. FAM improves
the performance of the CNNs in discriminative feature extrac-
tion. Unlike the large-margin softmax loss, FAM learns two
different margins for negative and positive classes to boost
the intra-class compactness and inter-class separability. The
negative class margin is larger than the positive class margin,
and, accordingly, FAM attempts to enhance the inter-class
separation with particular focus on the negative intra-class
compactness. For this reason, negative pairs with small visual
differences are not considered as positive pairs, leading to
improved retrieval performance. The extensive experimental



results on two public fashion datasets show clear advantages
over the state-of-the-art methods and all the compared margin-
based softmax functions.
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